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1. Introduction

Since the introduction by Slutsky [13], moving average models have played a signifi-
cant role in time series analysis, especially in finance and economics. The models have
been extended to include measurable (nonlinear) functions of independent and identi-
cally distributed random variables, representing unobservable and purely random im-
pulses, for example, Robinson [12]. The characterizing feature of these models is the
cut-off of the auto-covariance functions when they exist, implying that they are models
of short memory. Another interesting feature of these models is the homogeneity of the
random impulses, free from any feedback in the generating mechanism. Now, Slutsky
developed these models in an economic context; the random impulses may correspond to
unobservable political factors. In such a context, as well as in other contexts for which
these models are relevant (e.g., business studies), it can be argued that feedback is often
present: political decisions are often predicated on economic conditions. One simple way
to incorporate feedback in these models is through the notion of thresholds, that is, on-off
feedback controllers.
Since Tong [14] initiated the threshold notion in time series modelling, the notion has

been extensively used in the literature, especially for the threshold autoregressive (TAR)
or TAR-type models. For these models, some basic and probabilistic properties were
given in Chan et al. [3] and Chan and Tong [4]. More related results can be found in
An and Huang [1], Brockwell et al. [2], Chen and Tsay [5], Cline and Pu [6, 7], Ling [8],
Ling et al. [9], Liu and Susko [10] and Lu [11], among others. A fairly comprehensive
review of threshold models is available in Tong [15] and a selective survey of the history
of threshold models is given by Tong [16].
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However, most work to-date on the threshold model has primarily concentrated on
the TAR or the TAR-type model. The threshold moving average (TMA) model, that
is a moving average model with a simple on-off feedback control mechanism, has not
attracted as much attention. As far as we know, only a few results are available for the
TMA model. Brockwell et al. [2] investigated a threshold autoregressive and moving-
average (TARMA) model and obtained a strictly stationary and ergodic solution to the
model when the MA part does not contain any threshold component. Unfortunately,
their TARMA model does not cover the TMA model as a special case. Using the Markov
chain theory, Liu and Susko [10] provided the existence of the strictly stationary solution
to the TMA model without any restriction on the coefficients. However, they neither
gave an explicit form of the solution nor proved the ergodicity. A similar result can be
found in Ling [8]. Ling et al. [9] gave a sufficient condition for the ergodicity of the
solution for a first order TMA model under some restrictive conditions. These results
have been extended to the first-order TMA model with more than two regimes. However,
the uniqueness and the ergodicity of the solution are still open problems for higher-order
TMA models.
In this paper, we use a different approach to study the TMA model without resort-

ing to the Markov chain theory. Note that the TMA model involves a feedback control
mechanism. An intuitive and simple idea is to seek a closed form of the solution in terms
of the above mechanism, which is expressible as an indicator function. We can show that
for the TMA model there always exists a unique strictly stationary and ergodic solution
without any restriction on the coefficients of the TMA model. More importantly, for the
first time in the literature, an explicit/closed form of the solution is derived. In addi-
tion, for the correlation structure, we show that the ACF (when it exists) of the TMA
model typically does not cut off. In fact, it has a much richer structure. For example,
it can exhibit almost long memory, although it generally decays at an exponential rate.
Furthermore, the difference between the joint two-dimensional distribution and the cor-
responding product of its marginal distributions also decays to zero at an exponential
rate as the lag tends to infinity.
The rest of the paper is organized as follows. Section 2 discusses the strict stationarity

and ergodicity of the TMA model. Section 3 studies the asymptotic behaviour of the
ACF of the TMA model and other correlation structure. We conclude in Section 4. All
proofs of the theorems are relegated to the Appendix.

2. Stationarity and ergodicity of TMA(q) models

We first consider a TMA(q) model which satisfies the following equation:

yn =























µ1 + en +

q
∑

i=1

φien−i, if yn−d ≤ r,

µ2 + en +

q
∑

i=1

ψien−i, if yn−d > r,

(2.1)
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where {en} is a sequence of i.i.d. random variables. Here, q and d are positive integers,
r ∈ R, the real line, is the threshold parameter, and µ1, µ2, φi and ψi, i = 1, . . . , q, are
real coefficients.
For the sake of simplicity, we adopt the following notation:

Un = 1(an ≤ r) and Wn = 1(bn ≤ r)− 1(an ≤ r),

where 1(·) is an indicator function,

an = µ2 + en +

q
∑

i=1

ψien−i and bn = µ1 + en +

q
∑

i=1

φien−i. (2.2)

The following theorem gives the strict stationarity and ergodicity of model (2.1).

Theorem 2.1. Suppose that {en} is a sequence of i.i.d. random variables with P(an ≤ r,
bn ≤ r) + P(an > r, bn > r) 6= 0. Then yn has a unique strictly stationary and ergodic

solution expressed by

yn = µ2 + en +

q
∑

i=1

ψien−i +

[

(µ1 − µ2) +

q
∑

i=1

(φi −ψi)en−i

]

αn−d, a.s.,

where

αn−d =

∞
∑

j=1

[(

j−1
∏

s=1

Wn−sd

)

Un−jd

]

, in L1 and a.s.

If e1 has a strictly and continuously positive density on R (e.g., normal, Student’s tv or
double exponential distribution), then P(an ≤ r, bn ≤ r)+P(an > r, bn > r) 6= 0. The basic
idea for Theorem 2.1 is a direct and concrete expression in terms of 1(yn−d ≤ r), without
resorting to the Markov chain theory. Theorem 2.1 shows that the TMA(q) model is
always stationary and ergodic as is the MA(q) model.

3. The ACF of TMA(q) models

The ACF plays a crucial role in studying the correlation structure of weakly stationary
time series. It is well known that for a causal ARMA(p, q) model, its ACF ρk goes to
zero at an exponential rate as k diverges to infinity. The exact formula for ACF can be
obtained although its closed form is not compact. However, for a general nonlinear time
series model, it is rather difficult to obtain an exact formula for the ACF and to study
the asymptotic behaviour. Additionally, the notion of memory, short or long, is closely
associated with the ACF. One significant fact is that a causal ARMA(p, q) model is short-
memory. For a general nonlinear time series model, due to its complicated structure, there
is no universally accepted criterion for determining whether or not it is short-memory.
As for some specific time series model, an ad hoc approach is usually adopted.
One important characteristic of the MA(q) model is that its ACF cuts off after lag q.

Interestingly, this property is not generally inherited by the TMA model; this is not sur-
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prising theoretically because the TMA model involves some nonlinear feedback. Another
interesting fact is that although a TMA model is generally short-memory, in some cases
it can exhibit some almost long-memory phenomena; see Example 3.3. The following
theorem characterizes the ACF of model (2.1).

Theorem 3.1. Suppose that the condition in Theorem 2.1 is satisfied and E|e1|2 <∞.

Then there exists a constant ρ ∈ (0,1) such that ρk =O(ρk).

Theorem 3.1 indicates that the TMA model (2.1) is short-memory. The next theo-
rem describes the relationship between the two-dimensional joint distribution and the
corresponding marginal distributions.

Theorem 3.2. Suppose that {en} is i.i.d. random variables having a continuously,

boundedly and strictly positive density. Then, for any u, v ∈ R and k ≥ 1, there exists

a constant ρ ∈ (0,1) such that

|P(y0 ≤ u, yk ≤ v)− P(y0 ≤ u)P(yk ≤ v)|=O(ρk).

Actually, Theorem 3.2 still holds for Cov(1(u1 < y0 ≤ u2),1(v1 < yk ≤ v2)) where
−∞≤ u1 <u2 ≤∞ and −∞≤ v1 < v2 ≤∞. Next, we consider some special TMA models
and study their ACFs as well as some other properties.

Example 3.1. Suppose that yn is defined as

yn =

{

µ1 + en, if yn−1 ≤ r,
µ2 + en, if yn−1 > r,

where {en} satisfies the condition in Theorem 2.1 with mean 0 and finite variance σ2.

This example can also be regarded as a special case of the TAR model, which was
studied in Tong [15], Question 29, page 212. By calculation, we have the ACF of {yn}

ρk =
(µ1 − µ2)λk + (µ1 − µ2)

2δ0(1− δ0)β
k

σ2 + (µ1 − µ2)2δ0(1− δ0)
for k ≥ 1,

where λk = E[en−k1(yn−1 ≤ r)], β = [G(r−µ1)−G(r−µ2)] ∈ (−1,1) and δ0 =G(r−µ2)/
[1−G(r − µ1) +G(r− µ2)]. Here, G(x) is the distribution function of e1.
Clearly, the ACF does not possess the cut-off property except for µ1 = µ2. Generally,

ρk decays exponentially since λk =O(ρk) for some ρ ∈ (0,1) by the proof of Theorem 3.2.
In the nonlinear time series literature, the search for a nonlinear AR model with long
memory has been largely in vain. Against this background, it is interesting to note that
as µ1 →∞ and µ2 →−∞, ρk can exhibit almost long memory in that ρk can be made to
decay arbitrarily slowly. Note that Example 3.1 can be driven by a white noise process
with a thin tailed distribution. The skewness and the kurtosis of yn are also available
explicitly and interesting. Specifically,

skewness =
Ee31 + (µ1 − µ2)

3(δ0 − 3δ20 + 2δ30)

[σ2 + (µ1 − µ2)2δ0(1− δ0)]3/2
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Figure 1. The skewness (left) and the kurtosis (right) of yn as functions of r when e1 is standard
normal.

and

kurtosis =
Ee41 + 6σ2(µ1 − µ2)

2δ0(1− δ0) + (µ1 − µ2)
4(δ0 − 4δ20 + 6δ30 − 3δ40)

[σ2 + (µ1 − µ2)2δ0(1− δ0)]2
,

respectively. The impact of the threshold parameter r is related to the bi-modality of the
marginal density, which can be established by simple calculation. When e1 is standard
normal and (µ1, µ2) = (4,−1), Figure 1 shows the skewness and the kurtosis of yn as
functions of r.

Example 3.2. Suppose that {yn} follows a TMA(1) model without drift:

yn =

{

en + φen−1, if yn−2 ≤ r,
en + ψen−1, if yn−2 > r,

where {en} satisfies the condition in Theorem 2.1, having zero mean and finite variance.

After simple calculation, we have the ACF

ρk =







ψ+ (φ− ψ)̺

1 + ψ2 + (φ2 − ψ2)̺
, if k = 1,

0, if k ≥ 1,

where ̺= P(e2 +ψe1 ≤ r)/[P(e2 + φe1 > r) + P(e2 +ψe1 ≤ r)] ∈ [0,1).
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Figure 2. The sample ACFs of model (3.1).

This example shows that for some special TMA(q) model, the ACF may be cut off
after lag q. In particular, if φ = ψ, then the ACF coincides with that of the classical
linear MA(1) model. Unfortunately, for general TMA models with d ≤ q, there are no
explicit expressions available for the ACFs due to the extremely complicated dependence
of yt−d on {et−j, d≤ j ≤ q}. However, we can obtain the sample ACFs of TMA models
by simulation.

Example 3.3. Suppose that {yn} follows the TMA(1) model:

yn =

{

5 + en + 0.2en−1, if yn−1 ≤ 0.5,
−3+ en + 0.8en−1, if yn−1 > 0.5,

(3.1)

where {en} is i.i.d. standard normal.

This model produces a time series that mimics a unit root and long memory. In Fig-
ure 2, the sample ACF of model (3.1) decays slowly, although model (3.1) is stationary.

4. Concluding remarks

Conventional moving average models, whether linear or nonlinear, assume absence of any
feedback control mechanism. This paper shows that the introduction of simple feedback
can enrich the structure of moving average models. For example, their ACF need not cut
off but can now exhibit (near) long memory. Their distributions can be leptokurtic even
when driven by Gaussian white noise. In nonlinear time series modeling, moving average
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models have been overshadowed by autoregressive models. Our study suggests that, by
introducing a simple feedback mechanism, the notion of moving average possesses some
unexpected properties beyond the shadow.

Appendix A: Proofs of theorems

A.1. Proof of Theorem 2.1

From model (2.1), 1(yn ≤ r) = Un +Wn1(yn−d ≤ r). Iterating k ≥ 1 steps, we have

1(yn ≤ r) =

k−1
∑

j=0

[(

j−1
∏

s=0

Wn−sd

)

Un−jd

]

+

(

k−1
∏

i=0

Wn−id

)

1(yn−kd ≤ r)

with the convention
∏

−1
0 = 1. Let

αn,k =

k−1
∑

j=0

[(

j−1
∏

s=0

Wn−sd

)

Un−jd

]

.

For given d and q, there exists a unique nonnegative integerm such thatmd<max(d, q+
1)≤ (m+ 1)d. Let δ = E|W1|. Under the condition in Theorem 2.1, it is not difficult to
prove that 0 ≤ δ < 1. Observing that both {Un} and {Wn} are q-dependent sequences,
we can extract an independent subsequence {Wn−j(m+1)d, j = 0,1, . . . , [ k−1

m+1 ]} from the
sequence {Wn−id, i = 0,1,2, . . . , k − 1}, where [a] denotes the integral part of a. Since
|Un| ≤ 1 and |Wn| ≤ 1, it yields that

E

∣

∣

∣

∣

∣

(

k−1
∏

i=0

Wn−id

)

Un−kd

∣

∣

∣

∣

≤ (E|W1|)[(k−1)/(m+1)],

implying

∞
∑

j=1

E

∣

∣

∣

∣

∣

(

j−1
∏

i=0

Wn−id

)

Un−jd

∣

∣

∣

∣

∣

≤
∞
∑

j=1

δ[(j−1)/(m+1)] = (m+ 1)

∞
∑

k=0

δk <∞.

Using the above inequalities, we can prove that E|αn,s − αn,t| → 0 as s, t→∞ for each
fixed n. By the Cauchy criterion, αn,k converges in L1 as k→∞. Write the limit as

αn =

∞
∑

j=0

[(

j−1
∏

s=0

Wn−sd

)

Un−jd

]

.

Applying the inequalities above again, it is easy to get

∞
∑

k=1

E|αn,k − αn| ≤
∞
∑

k=1

∞
∑

j=k

δ[(j−1)/(m+1)] <∞,
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yielding that

lim
k→∞

αn,k = αn, in L1 and a.s.

Furthermore, recall that Un = 1(an ≤ r) and Wn = 1(bn ≤ r) − 1(an ≤ r), where an
and bn are defined in (2.2), we have the iterative sequence: αn,1 = Un and

αn,k = Un +Wnαn−d,k−1 = (1− αn−d,k−1)1(an ≤ r) + αn−d,k−11(bn ≤ r)

for each n and k ≥ 1. Note that αn,k and αn−d,k have the same distribution for fixed k
since the error {ei} is i.i.d. By induction over k, we have that αn,k only takes two values 0
and 1 a.s. since αn,1 only takes 0 and 1. Thus, αn at most takes two values 0 and 1 a.s.,
namely, αn = 1(αn = 1) a.s. Define a new sequence {Sn}

Sn = µ2 + en +

q
∑

i=1

ψien−i +

[

(µ1 − µ2) +

q
∑

i=1

(φi −ψi)en−i

]

αn−d.

By simple calculation, we have

1(Sn ≤ r) = 1(an ≤ r)1(αn−d = 0)+ 1(bn ≤ r)1(αn−d = 1)

= Un +Wn1(αn−d = 1)

= Un +Wnαn−d = αn, a.s.

Hence,

Sn = µ2 + en +

q
∑

i=1

ψien−i +

[

(µ1 − µ2) +

q
∑

i=1

(φi − ψi)en−i

]

1(Sn−d ≤ r), a.s.

Thus, {Sn} is the solution of model (2.1) which is strictly stationary and ergodic.
To uniqueness, suppose that S̃n is a solution to model (2.1), then

1(S̃n ≤ r) =Un +Wn1(S̃n−d ≤ r).

Iterating the above equation, one can get for k ≥ 1

1(S̃n ≤ r) = αn,k +

(

k−1
∏

i=0

Wn−id

)

1(S̃n−kd ≤ r).

We can show that the second term of the previous equation converges to zero a.s. Thus,
we have 1(S̃n ≤ r) = αn a.s. Therefore,

S̃n = µ2 + en +

q
∑

i=1

ψien−i +

[

(µ1 − µ2) +

q
∑

i=1

(φi − ψi)en−i

]

αn−d, a.s.,

that is, S̃n = Sn a.s. The proof is complete.
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A.2. Proof of Theorem 3.1

The notations an and bn are defined by (2.2),m and δ are the same as those in the proof of
Theorem 2.1. From Theorem 2.1, we have yn = an+(bn−an)αn−d. For n≥ (m+2)d+ q,
we decompose αn−d into two parts

αn−d =

[(n−q)/d]−1
∑

j=1

[(

j−1
∏

s=1

Wn−sd

)

Un−jd

]

+

∞
∑

j=[(n−q)/d]

[(

j−1
∏

s=1

Wn−sd

)

Un−jd

]

≡ I1 + I2.

Clearly, I1 ∈ Fn−d
d and I2 ∈ Fn−d

−∞
, where Fn

m = σ(em, . . . , en). By calculation, we have
for n≥ (m+ 2)d+ q

|Cov(y0, yn)| ≤
∞
∑

j=[(n−q)/d]

[

E

(

j−1
∏

s=1

|Wn−sd|
)]1/2

[E(bn − an)
2(y0 −Ey0)

2]1/2

≤
∞
∑

j=[(n−q)/d]

√
δ
[(j−1)/(m+1)]

[E(bn − an)
2]1/2[E(y0 −Ey0)

2]1/2

≤ H(m+ 1)

1−
√
δ

√
δ
[(n−q−d)/(d(m+1))]−1

by Hölder’s inequality, the boundedness of Wn and Un, and the independence of {bn, an}
and y0, where

H =

[

|µ1 − µ2|+ (Ee21)
1/2

q
∑

i=1

|φi − ψi|
][

|µ1|+ |µ2|+ (Ee21)
1/2

q
∑

i=1

(|φi|+ |ψi|)
]

.

Thus, the conclusion holds.

A.3. Proof of Theorem 3.2

Let xn = an+(bn−an)I1. Then yn−xn = (bn−an)I2. Clearly, xn ∈ Fn
d and E|yn−xn|=

O(ρn) for large enough n, where ρ ∈ (0,1). So, using the independence of xn and y0, for
large enough n, we have

|P(y0 ≤ u, yn ≤ v)− P(y0 ≤ u)P(yn ≤ v)|
= |E{[1(yn ≤ v)− 1(xn ≤ v)][1(y0 ≤ u)−E1(y0 ≤ u)]}|
≤ E|1(yn ≤ v)− 1(xn ≤ v)|.

On noting the independence between en and ēn−1, where ēn−1 = µ2 +
∑q

i=1ψien−i +
(bn − an)αn−d, the density of yn is fy(x) =

∫

R
h(x− y) dGē(y), where h(x) is the density
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function of e1 and Gē(y) is the distribution function of ēn−1. On using the property of
convolution, fy(x) is continuous and bounded. Write ‖fy‖∞ =max{|fy(x)|: x ∈R}. On
the one hand, using the following inequality

|1(x≤ t)− 1(y ≤ t)|1(|x− y| ≤ ε)≤ 1(t− ε≤ x≤ t+ ε),

we can get

E[|1(yn ≤ v)− 1(xn ≤ v)|1(|yn − xn| ≤ ε)]≤ P(v − ε≤ yn ≤ v + ε)≤ 2‖fy‖∞ε.

On the other hand, using Markov’s inequality, we have

E{|1(yn ≤ v)− 1(xn ≤ v)|1(|yn − xn|> ε)} ≤ E1(|yn − xn|> ε)} ≤ ε−1
E|yn − xn|.

Choosing ε=O(ρn/2), we can obtain

|P(y0 ≤ u, yn ≤ v)− P(y0 ≤ u)P(yn ≤ v)|=O(ρn/2).

Hence, the result holds.
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